Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies
نویسندگان
چکیده
Image segmentation consists in partitioning an image into different regions. MRI image segmentation is especially interesting, since an accurate segmentation of the different brain tissues provides a way to identify many brain disorders such as dementia, schizophrenia or even the Alzheimer’s disease. A large variety of image segmentation approaches have been implemented before. Nevertheless, most of them use a priori knowledge about the voxel classification, which prevents figuring out other tissue classes different from the classes the system was trained for. This paper presents two unsupervised approaches for brain image segmentation. The first one is based on the use of relevant information extracted from the whole volume histogram which is processed by using self-organizing maps (SOM). This approach is faster and computationally more efficient than previously reported methods. The second method proposed consists of four stages including MRI brain image acquisition, first and second order feature extraction using overlapping windows, evolutionary computing-based feature selection and finally, map units are grouped by means of a novel SOM clustering algorithm. While the first method is a fast procedure for the segmentation of the whole volume and provides a way to model tissue classes, the second approach is a more robust scheme under noisy or bad intensity normalization conditions that provides better results using high resolution images, outperforming the results provided by other algorithms in the state-of-theart, in terms of the average overlap metric. The proposed algorithms have been successfully evaluated using the IBSR and IBSR 2.0 databases, as well as high-resolution MR images from the Nuclear Medicine Department of the “Virgen de las Nieves” Hospital, Granada, Spain (VNH), providing in any case good segmentation results.
منابع مشابه
A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملCombining stationary wavelet transform and self-organizing maps for brain MR image segmentation
This study presents an image segmentation system that automatically segments and labels T1-weighted brain magnetic resonance (MR) images. The method is based on a combination of unsupervised learning algorithm of the self-organizing maps (SOM) and supervised learning vector quantization (LVQ) methods. Stationary wavelet transform (SWT) is applied to the images to obtain multiresolution informat...
متن کاملUn-supervised MR images segmentation using SOM and anisotropic diffusion filter
The primary aim in brain image segmentation is to perform partition a given brain image into different regions which are homogeneous with some criterion. Magnetic resonance image (MRI) segmentation plays crucial role in accurate representation of white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) provides a way to identify many brain disorders, such as Alzheimer’s disease, schizo...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Soft Comput.
دوره 13 شماره
صفحات -
تاریخ انتشار 2013